
AD-RI60 135 ON USING INYERTED TREES FOR UPDATING GRAPH PROPERTIES 1/1
(U) MARYLAND UNIV COLLEGE PARK CENTER FOR AUTOMATION
RESEARCH S PRRGI ET AL. MAY 85 CAR-TR-117

UNCLASSIFIED AFOSR-TR-85-0822 F49628-83-C-0G2 F/G 12/1 NL

EhllllllEEEE

.11.10

I

-~~~~ 111 1 0 I.3 8ma

.1-.

MICROCOPY RESOLUTION TEST CHART
NATIONAL. SURAU OF STANDADSU 963-A

IllI

In
.v1)May 1

7s -TIR -I n U

COn Using Inverted Trees for Updating

* ___ Graph Properties

Sixaunak Pwagi,-IV. Ramakrishinan . .

IIDepa:rtfleflt Ocolputer Sicnrt

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

i Approved for pUbl ic rolea8D,

distrib tLau iaulmited.

* S UNIVERSITY OF MARYLAND

!" COLLEGE PARK, MARYLAND C
20742 LEO

lO'

* -~* * : . -. - . *

.. 27, . .. -:77

CAR-TR-117 May 1985
CS-TR-1402

On Using Inverted Trees for Updating
Graph Properties

Shaunak Pawagi
I. V. Ramakrishnan

Department of computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Fast parallel algorithms are presented for updating connected components and
bridges of an undirected graph when a minor change has been made to the graph, such
as addition or deletion of vertices and edges. The machine model used is a parallel ran-
dom access machine which allows simultaneous reads but prohibits simultaneous writes
into the same memory location. The algorithms described in this paper require 0(log n)
time and use 0(n 2) processors. These algorithms are efficient when compared to previ-
ously known algorithms for finding connected components and bridges that require
0(log2 n) time and use 0(n) processors. The previous solution is maintained using an in-
verted tree (a rooted tree where a node points towards its parent) and after a minor
change the new solution is rapidly computed from this tree.

DTIC
S ELECTE

OCT 11 85

BC

The support or the first author bY the Air Force Office of Scientific Research under Contract F-40820-83-C-0082. and of
the second author by the Oice of Naval Research under Contract N00014-84-K-0530. and by the National Science Foun-
dation under grant ECS-84-0430g, is gratefully acknowledged. LDIS UTION STATEMENT A

Approved kx public teloase

Distribut*m Unlimited J
.~~

1.........

1

1. Introduction

Efficient algorithms for a variety of graph problems have been developed in past

(see [2] for an extensive bibliography). However, one aspect of this algorithmic approach

to graph theory has not been dealt with extensively. This aspect is concerned with

recomputing the properties of a graph after incremental changes have been made to it

such as addition and deletion of edges and vertices of the graph. Such recomputations

are also referred to as updating graph properties. Incremental changes made to a graph

model dynamic behavior of the underlying system that it represents. If such incremental

changes are minor (such as deletion and addition of an edge or vertex) then it should be

possible to construct efficient algorithms to recompute the properties of the graph when

compared to algorithms that do not use any of the previous information. Such algo-

rithms that make use of the previous solution (and possibly some additional information)

are termed incremental algorithms, while the algorithms for initial computation of graph

properties are referred to as start-over algorithms in [1]. The kinds of minor

-" modifications that are considered here are as follows. First, a vertex may be added along

with the edges incident on it. Second, an individual edge may be deleted or added.

We can characterize incremental graph algorithms in terms of stages. The first

stage is to determine what part of the solution is unaffected by the graph change. This

is important as substantial gains can be made by avoiding the recomputation of the

unaffected part of the solution. The second stage is the actual recomputation of that

part of the solution which is affected by the minor graph change. This stage can be

implemented efficiently by making use of the previous solution and possibly some auxili- -- i
ary information that is generated during the initial computation of the solution. This in -1

turn leads us to a third stage which consists of updating the auxiliary information.

..- t.

* -- * .- ** -~ *..-... * .. *. -'.am,*

W%7 77W7 7 7, 77r"'r'~ 77W. W... -. 7

2

k.
Q

When we compare the computational complexity of an incremental algorithm to that of

,* start-over algorithms we need to consider the complexity of all three stages of the incre-

mental algorithm. Our objective is to design incremental algorithms that are efficient

when compared to start-over algorithms.

An important aspect of incremental algorithms is the design of data structures to

store the previous solution as well as some auxiliary information that is generated during

the initial computation. Such data structures should provide rapid access to the neces-

sary information for efficient updates of the solution. As we will see later on our update

algorithms require fast identification of the vertices that belong to two different subtrees

that are created by deleting an edge from the tree. For an inverted tree (a rooted tree

where a node points towards its parent) these computations can be done in parallel in

O(log n)" time on our model of computation (see [12]). It was shown in [81 that an

inverted spanning tree can be used for parallel update of a minimum spanning tree in

O(log n) time. In this paper we show that some more graph properties such as connected

components and bridges can be updated in O(log n) time using an inverted spanning tree

of the graph. We store connected components and bridges using inverted trees. Our

algorithms ensure that these trees are maintained as inverted trees after successive

updates.

Our model of computation is the unbounded parallel random access machine

(PRAM). We assume that all processors have access to a common memory and that

simultaneous reads from the same location are allowed but simultaneous writes to the

same location are prohibited. Efficient algorithms have been developed for several graph

P% problems on this particular model of parallel computation [4-7 and 8-11[. These algo-

Throughout this paper, we use log n to denote [1og 2n 1

3

rithms provide a standard with which we compare the complexity of our incremental

algorithms.

The rest of the paper is organized into four sections. In Section 2 we describe some

graph-theoretic preliminaries adopting the framework in [14]. In Section 3 we describe

- the update algorithm for connected components. The update algorithms for bridges and

*. bridge-connected components are described in Section 4.

2. Preliminaries

In order to describe our algorithms to update graph properties we now present

some graph theoretic preliminaries.

Let G=(V,E) denote a graph where V is a finite set of vertices and E is a set of

pairs of vertices called edges. If the edges are unordered pairs then G is undirected else

it is directed. Throughout this paper we assume that V=(1,2,...,n}, IVI=n and IEI=m.

. \We denote the undirected edge from a to b by (a,b) and the directed edge between them

* by <a,b>. We say that an undirected graph G is connected if for every pair of vertices

u and v in V, there is a path in G joining u and v. Each connected maximal subgraph

" of G is called a component of G. An adjacency matrix A of G is an n X n Boolean matrix

* such that A[u,v]=l if and only if (u,v) e E. A tree is a connected undirected graph with

no cycles in it. Let T=(V ,E') be a directed graph. T is said to have a root r, if r e V

and every vertex v c V is reachable from r via a directed path. If the underlying

undirected graph of T is a tree then T is called a directed tree. If the edges of T are all

reversed then the resulting graph is called an inverted tree. An inverted spanning tree

(IST) and an inverted spanning forest (ISF) are defined similarly. We denote an

undirected path from vertex a to vertex b by [a-b and directed path by [a-.b]. We say

that vertex w is an ancestor of vertex v if w is on the path from v to the root of the

-o. N-

- *.o

4

tree. Let T be a directed tree with u,v e V Then the lowest common ancestor

(LCA(u,v)) of u and v in T is the vertex w e V such that w is a common ancestor of u

and v, and any other common ancestor of u and v in T is also an ancestor of w in T.

As we will see later on, our update algorithms require the paths from all vertices to

the root in an inverted tree. Tsin and Chin [14] have described a technique due to

Savage [101 to compute all such paths. For completeness we now describe their tech-

nique.

Let T=(V' ,E') be an inverted tree with V' -{1,2,...,n) and IV' 1--n. Let r be the

root of this tree. For a directed edge <a,b> we say that vertex b is the father of vertex

a.

Definition: F:V --.V is a function such that F(i)=the father of vertex i in T for i3r

and F(r)=r.

The function F can be represented by a directed graph F which can be constructed

from T by adding a self-loop to the root r.

From the function F, we define Fk, k>O as follows.

Definition: Fk:V' -_.V' (k O) such that F°(i)=i for all i t Vj and Fk(i)==F(Fk-l(i)) for

all i f V and k>0.

If i is a vertex in T, Fk(i) is the kth ancestor of i in the inverted tree.

Definition: For each i c V , depth(i)=min{ktFk(i)=r and 0 < k <n).

Lemma 2.1: Given the function F of an inverted tree, Fk can be computed in O(log n)

time using O(n2) processors.

7..
10

7 136

5g 9

0 / 2 ///

/ /

3 11 5 12

0 I 2 3 4 5 I 7 6 9 10 II 12

o, 2s

' -'
_ I 3 ' "

70 ,1 0 2

'I _ "°t7
310 1 0 1

12 1 j ,

13 -1 11 2.......A..1.. -

Undefined entries are left blank.

Fig. 2.1

Proof: We compute the function Fk by successive compositions of functions F' (i<k)

that have been determined in previous iterations. The number of ancestors of a vertex

that are marked in each iteration increases by a factor of two. Since a vertex can have at

most n-i ancestors, we need O(log n) iterations to mark all ancestors. To do the ith

..
.

8

iteration in constant time we require 2'n processors. As there are log(n-1)-I iterations,

we require O(n 2) processors. M

The actual computations of Fk(i) (1<i<n, 1<k<n) are performed in an array F +

in which F+[i,k] contains Fk(i). Once the F+ array is computed, depth(i) (1i~n) can

be found by performing a binary search on the ith row. We search for the leftmost

i* occurrence of r. This takes log n time by assigning a processor per row. However, it can

- be done in constant time by assigning a processor to each element in F'. This is done as

follows. Every processor compares its element with the elements in its left and right

neighbors. There is exactly one processor which does not have all the three elements

identical or distinct and this processor locates the leftmost occurrence of r. The depth

information is stored in a one-dimensional array D+.

After the computations for D' are finished, each row of F + is right shifted so that

*all the r's except the leftmost one are eliminated. As a consequence, the rightmost

o. column of the array contains only the root r. Fig. 2.1 illustrates an inverted tree and its

array F' after the rows have been shifted right.

*- Lemma 2.2: We can compute the lowest common ancestors of all vertex pairs in the

-" inverted tree in O(log n) time using O(n2) processors.

* Proof: We make use of the array F + to design a parallel algorithm for finding the

lowest common ancestors. For an n vertex graph there are 'C2 (the number of unor-

dered pairs of n elements) vertex pairs, that is O(n 2) pairs. Let a and b be a vertex pair.

If c is their lowest common ancestor, then row a and row b of F' will have identical con-

tents for column n-1, column n-2, ... down to the column containing c. After this

column the contents of rows a and b differ. As a result, to determine c, we can perform
'p

'..- . -.... .-.-... -.. . •.. . . -...-. -. .. -. . ' .. . -_. -

.~~~~~~ ,-, _.' k~ .. ,, j, L. -. .- ;- ,,, ..: . ,• - .. 7 .-. . - .-. - ; . -. ~-. .- ,

7

a binary search on row a and row b simultaneously in the following way. If the two

entries being examined in row a and row b (in the same column) are different, the search

is continued on tht right half, otherwise it is continued on the left half. It takes (log

n)+1 time steps to find c with one processor. Therefore we need O(n 2) processors to find

the lowest common ancestors of all vertex pairs. LI

Having obtained the lowest common ancestor we can now identify the unique path

between any two vertices (passing through their lowest common ancestor). We now

. describe our parallel algorithms for updating connected components.

3. Connected Components

The problem of updating connected components of a graph deals with recomputing

*. the sets of vertices, one for each component, after an incremental change has been made

• " to the graph. The start-over algorithm for finding connected components [6] does not

compute these sets directly but outputs a function R,:V--V such that R(i) is the

- representative vertex of the connected component of G to which the vertex i belongs.

Incremental algorithms for updating connected components update the function R.

Cheston [1] in his thesis has compared several sequential algorithms for updating

- connected components. Even and Shiloach [3] have described a sequential algorithm for

an on-line edge deletion update of connected components. Hirschberg et al. [6] have

described a parallel algorithm for computing connected components on a PRAM that

requires O(log 2n) time and uses O(n 2) processors.

Our algorithms for the edge update as well as vertex insertion problem require

O(log n) time and use O(n2) processors. We assume that the update algorithms operate

on an inverted spanning forest (ISF) for the graph. Using a technique due to Tsin and

Chin [121 the start-over algorithm for finding the connected components can be modified

---------------. *.--- *<* .* *.

.

to generate an ISF for the graph that contains one IST for each connected component of

the graph. The representative vertex for each component is the root of the correspond-

ing [ST. The algorithms described in this section first update the ISF and then compute

* the array F+ . (See Section 2.) The last column of F' specifies the updated function R,

which in turn determines the new connected components.

Edge Update Algorithms

We now describe our algorithm to reconstruct the new ISF after an edge has been

deleted or added into the underlying graph.

If the edge [say, (x,y)] to be deleted is not in the forest then the forest remains

unchanged. On the other hand if (x,y) belongs to one of the trees in the forest then that

particular tree can be reconstructed as follows.

1 Delete the tree edge (x,y). This replaces the tree by two subtrees.

2. Identify the vertices in each of these subtrees.

3. Find an edge (u,v) connecting them.

When we add an edge (u,v) to the graph, the forest remains unchanged if edge (u,v)

connects two vertices belonging to the same tree. If (u,v) connects two different trees in

the forest then (u,v) is added to the forest. The edge (u,v) and the two trees connected

by it form a new tree in the forest.

Since our algorithms operate on an ISF we must now maintain the new forest as an

ISF The actual computational steps are described below. Let (x,y) be the edge to be

deleted from an IST rooted at r.

1. We assume, without loss of generality, that the direction of edge (x,y) is from x to

y. To delete (x,y) set F(x)=x. This creates two subtrees, one of which is rooted

i!-7

at r and the other at x. This step can be done in constant time using a single pro-

cessor.

2. Compute the array F'. By Lemma 2.1 this can be done in O(log n) time using

0(n2) processors. At the end of this step all vertices in the subtree rooted at r will

have r in their last column in F' and the vertices in the subtree rooted at x will

have x in their last column. We therefore can identify the vertices in the two sub-

trees.

. 3a. For each vertex i in the subtree rooted at r find an edge (ij) such that j is in the

subtree rooted at x and j is the minimum among all neighbors of i. This can be

done in O(log n) time by assigning n processors to every vertex.

3b. The edge (u,v) connecting these two subtrees can now be found from the edges

selected in step 3a such that v is the minimum among all j's belonging to the sub-

tree rooted at x. If no such edge exists then deletion of edge (x,y) has disconnected

the tree to which it belonged, creating two ISTs, one for each component

- 4. If the edge (u,v) does exist then add it to the forest connecting the two subtrees

created in step 1. In order to maintain the new tree thus formed as an inverted

tree, we proceed as follows.

Assume, without loss of generality, that u is in the subtree rooted at x and v is in

the subtree rooted at r. Now orient the edge (u,v) from u to v. To do so set

Fl(u)=v. In step 2 we found the path from vertex v to x. Reverse the directions

of the edges on the directed path [v-xJ in the old inverted tree. For instance, if

the directed edge <a,b> was on the directed path [v--.x then set Fl(b)=a. This

path can have at most n edges and hence the reversal can be done in constant time

using n processors.

*',, .' ,, .. *.- .*-.* . -'- .. - . . . - ** r.'. .'. -. . .- . ,..-.. . .- r ' .- ' .- ' ,.. .% ' . "

10

5. In order to update the function Re, compute F'. The last column of F+ determines

the new set of connected components. This step can be done in O(log n) time using

O(n 2) processors.

The computational steps to update ISF when an edge (u,v) is added to the graph

connecting two ISTs in the forest are the same as steps 4 and 5 of the edge deletion

algorithm. The array F' is computed at the end of step 5. After the computation, the

last column of F completely determines the function R.

Vertex Update Algorithm

The vertex update problem involves reconstructing the 1SF after a vertex has been

deleted or inserted into the underlying graph. Our approach to the vertex insertion

problem is a generalization of the edge insertion algorithm, where all the new edges

added to the graph are incident on the new vertex. The other case of updating the ISF

when a vertex is deleted from it appears difficult to handle. For instance, if one of the

ISTs in the forest is in the form of a star (that is, there exists a vertex on which all the

edges in the tree are incident), the deletion of such a vertex deletes all the edges in the

tree. Updating the ISF then requires reconstructing that particular tree all over again

and this takes O(log2n) time.

In order to update the ISF after a new vertex has been inserted into the underlying

graph we select a new edge for each component that connects it to the new vertex. We

assign directions to new edges entering the forest and re-orient some of the old edges in

the forest. The computational steps are as follows.

Let z be the new vertex inserted into the graph.

,...

-. - - . t - M L - W-

11 917 W-

1. Compute the array F'. The last column of F identifies the vertices in the con-

nected components of the graph. This can be done in O(log n) time using O(n2)

processors.

2. Identify the multiple edges incident on each component that are brought in by the

vertex z. Select an edge (w,z) for each connected component such that w is the

minimum among the vertices that have now become adjacent to the vertex z. This

selection can be done as follows. Define a vector of length n for each connected

component identified by the root of the corresponding IST. Now assign a processor

to each new edge (v,z). This processor marks the vth l&;cation in a vector defined

for the component to which the vertex v belongs. This marking takes constant

time and uses at most n processors. Now assign n processors to each vector and

select a minimum vertex among the vertices that are marked. This step requires

O(log n) time and uses 0(n 2) processors.

3. Let rl, r2, . . rk be the roots of the k trees in the forest that are now connected

to z. Let wl, w2, . . . , wk be the vertices in these trees that are selected in step 2.

The array F4 computed in step 1 contains the paths from w, to r1 , w2 to r2 , .. ,wk

to rk. Reverse the directions of all the edges on these paths. Next orient all the

edges (wl,z), (w,z),..., (W,z) towards z. Thus z becomes the root of the new

inverted tree formed by k trees in the forest and the vertex z. Reversal of the

edges can be done in constant time using O(n) processors.

4. Compute the array F'. Again the last column of F4 completely determines the sets

of vertices in the connected components of the new graph.

This completes the description of our algorithms to reconstruct the new ISF after a

minor change has been made to the graph. This reconstruction requires O(log n) time

--o .~. -.- - <.---..--..~ * * *

and uses O(n2) processors.

S-.The inverted spanning forest (tree) appears to be a very useful data structure to

store the information regar 'g the connectivity of the graph. Several other graph pro-

perties can be recomputed once the ISF for a new graph is reconstructed. This enables

us to develop efficient algorithms for updating these properties. For instance, we can

compute the new set of fundamental cycles for the modified graph. Note that every

edge not in the tree induces a fundamental cycle in the tree. In order to recompute the

set of fundamental cycles we proceed as follows.

1. Reconstruct the IST. Compute the array F + and determine the LCA for every pair

of vertices in the graph. Let u be the LCA of the vertex pair (v,w). LCA computa-

tion can be done in O(log n) time using O(n 2) processors. (See Section 2.)

2. The fundamental cycle induced by the edge (v,w) consists of paths [v--uj and

[u--w] in the tree and the edge (v,w). These paths can be determined using the

rows for the vertices v and w in the array F+.

In the next section we show that the IST can be used to update bridges and

bridge-connected components of an undirected and connected graph.

4. Bridges and Bridge-Connected Components

In this section we describe incremental algorithms for finding the bridges of an

undirected graph after a change has been made to the graph. Assume, without loss of

generality, that the undirected graph is connected. Tsin and Chin [12] have described

an O(log 2 n) algorithm for finding all the bridges in a connected undirected graph on a

s: PRAM. Our update algorithms require O(log n) time and use O(n2) processors.

.1

. . .D

13

The algorithms presented in this section depend on a function HLCA:V-V which

was first defined in [12] as follows. (H stands for highest.)

- Definition: Let G-=(V,E) be an undirected graph and T=(V,E') be its IST and u C V.

HLCA(u) is a vertex nearest to the root of T such that it is an LCA(u,v), where (u,v) is

an edge not in T.
,.

The computation of the function HLCA involves numbering the vertices in T in

preorder. Recently Tarjan and Vishkin [11] have described a novel algorithm to corn-

- pute tree functions which include preorder numbering. Their algorithm takes O(log n)

".* time and uses n processors. Let pmax(u) and pmin(u) denote a vertex that has max-

imum and minimum preorder number among the neighbors of u respectively. The func-

.°.- tions pmax and pmin can be computed in O(log n) time using n processors per vertex,

since it involves finding a maximum and a minimum of at most n numbers for each ver-

. tex. Let vertex v be pmax(u) and vertex w be pmin(u). Then HLCA(u) is either the

vertex LCA(u,v) or the vertex LCA(u,w) depending upon whichever vertex is nearer to

the root of T. We therefore have the following lemma.

, . Lemma 4.1: Let T=(V,E') be an IST of G with vertices labeled in preorder. Then

" HLCA(u) for all u in V can be determined in O(log n) time using O(n 2) processors.

In order to determine the bridges of a graph the following characterization of

" bridges is useful.

Lemma 4.2: If an edge in a graph G is a bridge then it belongs to every spanning tree

of 0.

Lemma 4.3: An edge (x,Fl(x)) in an IST of G is a !ridge if" for every descendant i of x,

C *.

.. '.-."

14

its adjacent vertices are also descendants of x.

The proofs of these lemmas are obvious. Using the function HLCA and Lemma 4.3,

we can easily determine that an edge (x,F1 (x)) is a bridge iff for every descendant i of x,

depth(HLCA(i)) > depth(F(x)). Since each vertex in T can have at most n descen-

dants, assign n processors to every edge in T. Using the results of n such depth com-

parisons performed for every edge, we now can determine if that edge is a bridge or not

in O(log n) time using O(n) processors. We therefore have the following theorem.

Theorem 4.1: Given the HLCA of every vertex in T we can determine all the bridges in

O(log n) time using 0(n 2) processors.

Edge Update

The best known start-over algorithm [12] for finding all bridges of an undirected

graph first constructs an IST of the graph and then determines the bridges by comput-

ing the HLCA of every vertex in the IST (see Theorem 4.1). The construction of an IST

takes O(log 2n) time and the rest of the steps require O(log n) time as described earlier.

Since we can update the 1ST of the graph in O(log n) time when an edge is deleted or

added or a vertex is inserted into the underlying graph, we therefore can determine the

bridges for the new graph in O(log n) time. However, such a straightforward approach

would test all the edges every time the graph undergoes a change. We now describe

another approach that requires testing of fewer edges. This approach is based on the

following lemma whose proof is straightforward.

Lemma 4.4: An edge in a spanning tree of a graph is a bridge iff it does not lie on any

fundamental cycle.

* Now consider the case when an edge (u,v) is added to the graph. The edge (u,v)

induces a fundamental cycle in the IST which can be determined using the array F+ and

LCA(u,v). (See Section 3.) All the bridges lying on this cycle now become non-bridges.

The computation of F' and LCA for every pair of vertices requires O(log n) time and

uses 0(n2) processors. The second step (finding the bridges lying on the cycles and

marking them as non-bridges) can be done in constant time and needs at most n proces-

sors. The IST of the graph remains unchanged.

The other case of determining bridges after an edge has been deleted is handled as

follows. There are two subcases to be considered. In the first subcase we assume that

the deleted edge (x,y) was not in the tree. We then need to recompute the HLCA of all

the vertices lying on the cycle induced by edge (x,y). All the edges lying on this cycle

need to be tested as to whether they have become bridges. As there are at most n ver-

tices and (n-i) tree edges lying on such a cycle, we can do this in 0(log r) time using

0(n -) processors. (See Lemmas 4.1 and 4.3.)

For the second subcase, assume that the deleted edge was in the IST. Deletion of

the edge (x,y) creates two subtrees. Update the IST using the technique described in

Section 3. If (x,y) was a bridge then the IST becomes an ISF and the rest of the bridges

are not affected. On the other hand if (x,y) was not a bridge then let (u,v) be an edge

selected during an update step that connects the subtrees. Now this case is equivalent

. to the previous subcase if we treat (x,y) as a non-tree edge that was deleted. We again

need to test the edges lying on the cycle induced by the edge (x,y) in the new 1ST.

This completes the description of the edge update algorithms for determining all

bridges of the modified graph.

"* 16

Vertex Insertion

The case of vertex insertion is handled as an extension of the edge insertion prob-

lem.

Let z be the new vertex that is added to the graph. Construct the new IST accord-

ing to the vertex insertion algorithm described in Section 3. If in the new graph z has

only one edge incident on it, then that edge is in the IST and it is a bridge. All the

other bridges remain unchanged. Suppose z has more than one incident edge in the new

graph. There can be at most (n-1) such edges which are incident on z but are not in the

tree. (This is because we just selected one representative edge that connects z to the old

ISTA Compute the array F+ and the function LCA for the new IST of the graph. These

(n-i) edges induce (n-i) cycles in the IST. All bridges lying on these cycles become non-

bridges. Since there are at most (n-i) edges on each cycle that are to be tested, we need

O(n 2) processors to mark the bridges as non-bridges in constant time. However, more

than one processor may mark the same edge as a non-bridge, resulting in a write conflict

(disallowed by our model of computation). Such a write conflict can be avoided using a

technique due to Hirschberg [5] which marks all the bridges lying on these cycles as non-

bridges in O(log n) time using O(n 2) processors.

Bridge-Connected Components

Once we have updated the bridges of the modified graph, the bridge-connected

components can be determined as follows.

1. Delete all the bridges from the IST. This creates a forest of ISTs, one for each

component.

17

2. Compute the array F' . This takes O(log n) time and uses O(n2) processors. The

last column of F+ determines the new bridge-connected components of the modified

graph.

5. Conclusions

Incremental graph algorithms deal with recomputing properties of a graph after an

"- incremental change has been made to the graph. In this paper we have described paral-

lel algorithms to update connected components and bridges of an undirected graph after

an edge has been inserted or deleted or a new vertex has been inserted in the underlying

graph. Our algorithms require O(log n) time and use O(n2) processors and therefore are

efficient when compared to the start-over algorithms. We have shown that an inverted

tree is a useful data structure for developing algorithms to update properties of an

undirected graph. It would be interesting to explore the applicability of this data struc-

* ture to a variety of other graph problems.

References

*i] G. Cheston, "Incremental Algorithms in Graph Theory", TR 91, Dept. of Com-

puter Science, Univ. of Toronto, Toronto (1976).

S[2 N. Christofides, "Graph Theory: An Algorithmic Approach", Academic Press, New

York (1975).

L31 S. Even and Y. Shiloach, "An On-line Edge Deletion Problem", J. ACMV, 28 (1982),

pp 1-4.

41 D. Hirschberg, "Parallel Algorithms for the Transitive Closure and the Connected

Component Problems", Proc. of Eighth ACM Symposium on Theory of Computing

(1976), pp 55-57.

• °-.

J 18

[5] D. Hirschberg, "Fast Parallel Sorting Algorithms", Comm. ACM, 21 (1978), pp

657-661.

- [6] D. Hirschberg, A. K. Chandra and D. V. Sarwate, "Computing Connected Com-

*o ponents on Parallel Computers", Comm. ACM, 22 (1979), pp 461-464.

. [71 M. J. Quinn and N. Deo, "Parallel Graph Algorithms", ACM Comp. Surveys, 16

(1984), pp 319-348.

[8] 1. V. Ramakrishnan and S.Pawagi, " Parallel Update of Minimum Spanning Trees

in Logarithmic Time", TR 1452, Dept. of Computer Science, Univ. of Maryland,

College Park (1984).

[9j C. Savage, "Parallel Algorithms for Some Graph Problems", TR-784, Dept. of

Mathematics, Univ. of Illinois, Urbana (1977).

[10] C. Savage and J. Ja'Ja', "Fast Efficient Parallel Algorithms for Some Graph Prob-

lems", SIAM J. Comp., 10 (1981), pp 682-691.

- 11 R. E. Tarjan and U. Vishkin, "Finding Biconnected Components and Computing

Tree Functions in Logarithmic Parallel Time", Proc. of Twenty-third Annual FOCS

Symposium (1984), pp 12-20.

[121 Y. Tsin and F. Chin, "Efficient Parallel Algorithms for a Class of Graph Theoretic

Problems", SIAM J. Comp., 14 (1984), pp 580-599.

UNLASSIFIED
7

SECUuiT" CLASSIFICATION OF TI4IS PAGE/3

REPORT DOCUMENTATION PAGE

is REPORTSEG.URITw CLASSIFICATION 1b. RESTRICTIVE MARK(INGS

UNCLASSIFIED NIA
2. SECURITV C64ASSFICATIOI4 AUTHORITY 3. ISTRISLJTION/AVAILASILITY OF REPORT

-N/A Approved for public release;
ft OCL4ASSIPICATIONOOWNG0RAOINGSCEOL distribution unlimited

N/A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 PEIROAMING ORGANIZATION REPORT NUPASERISI 5. MONITORING ORGANIZATION REFPORT NUMBERiSl

CAR-TR-117 AC~'~

CS-TR-1492 ______ 4~~i'~. -

*6a NAME OF PERFORMING ORGANIZATION 0b. OFFICE SYMBOL 7s. NAME Of MONITORING ORGANIZATION
(IfiaDpIicableJ

University of Maryland j N/A Air Force Office of Scientific Res.
4 1 . C, ~.-4 ZIP Code) 71) -0ORESS (City -VIGtE and 71P Codiei

Center for Automation Research Boiling Air Force Base
College Park, MD 20742 Washington, DC 20332

ds 14,4%4t OF PUJNOING,SPOINSOR ING 1
8b. OFFICE SYMBOL g. PROCUREMENT INSTRIUMENT lOI: ,TIFICA ThON N.UMSER

''NIZATION (rDL~W

F49620-83-C-0082

I& AOORIESS $City.. Stae old ZIP Code)I 10. SOURCE OF FLJNOING Nos. _______ ______

PROGRAM PROJECT TSK WOR4K UNIT
LE ME NT NO. NO. NO. No

I IITl% fleietrtyC' I~ for Updating ~/ cj J<
__Lranh Progjartig
12. PFUS13NAL AUTNOI(SI

Q* ' 3b IME COVERED 14 OATE OF REPORT ()*P. Mo.. n~ IS. op,%G r"')% r

Technical FOM ____TO N/A May 1985 Y_______

C03ATI COOES 13SUBJ.ECT TERMS ICOntana~t On 'vscre. It neesary and idmntify byblc u gi

FIELO GROUP -su GU .

ASTRACT (Continue on nruerw if nsceuwsy and identity by block nuombiii.

Fast parallel algorithms are presented for updating connected comn-
ponents and bridges of an undirected graph when a minor change has been
made to the graph, such as addition or deletion of vertices and edges.

-*The machine model used is a parallel random access machine which allows
* simultaneous reads but prohibits simultaneous writes into the same memory

location. The algorithms described in this paper require O(log n) time
and use 0(n2) processors. These algorithms are efficient when compared

* to previously known algorithms for finding connected components and
bridges that require 0(log2n) time and use 0(n2) processors. The previous
solution is maintained using an inverted tree (a rooted tree where a node
points towards its parent) and after a minor change the new solution is
rapidly computed from this tree.-_

20 OISTAI GUT 1014AVA-LABI LIT Y OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

WNCLASSIFIEO/U1NLIMITEO C2 SAME AS APT. COTC USgRS CUNCLASSIFIED
.* 22s 1 SMI '31 RE N I NOIVIGUAL ,122b TELEPIIONE NUMBER 22c ot-F-r. SYMBOL,

RESPOSIBK Iftchi Aprae Code)

00 FORM 1473, 83 APR ED0ITION Of I JAN 73 IS OBSOLETE. UNLASIFIED
* SECUR4ITY CLASSIFICATION OF TmiS PAGE

FILMED

12-85

DTIC
k':ij,, ~ ~~~~~~~~~., .., ...-.-. .-.-,.- .-...-

. ~ ~ ~ ~. .__- , -. -,..*....:*..-:..:: .:. ...-.. ~ .9 -:.:-: ,9 -.. :.-, ,. , ::..; .:. ,-:. ._ -

